If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(t^2)+10t+24=0
a = 1; b = 10; c = +24;
Δ = b2-4ac
Δ = 102-4·1·24
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2}{2*1}=\frac{-12}{2} =-6 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2}{2*1}=\frac{-8}{2} =-4 $
| 23.25-2.1n=7.82(n+3.1) | | 55=5-5x | | 6(x−1)=6x−1 | | -4.9x-4.1(-2.5x+2.2)=-23.13+1.2x | | 6-5z+8=-4z+1 | | b+5=1.06-1.3b-6.8-2.6 | | -8=-5x-8 | | 3x+60=8x+5 | | 9-3x=2x-26 | | 4(x-3)=+2 | | 5+2x3=35 | | 10=7*3x | | (q^2)+2q-15=0 | | -23x+7=-23+7 | | 10-5x=3(x-4)-(x+7) | | 2.02w=-3.636* | | 20-m=35-2m | | 7-x=128 | | 5x+26=-3 | | -6.3m-4.94=1-5.2m | | -10=-8b+7 | | 1-(x+7=6x+8 | | -99=-9-9p | | x-9=110 | | -2n+12–6n=68 | | 59=x+14 | | -5x+3+7x=-3x-12 | | 20=-4(-10+n) | | 200=10n* | | 18^2-3u=1 | | 9h=82 | | 1/4=2x-12/8 |